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Abstract Association mapping and linkage mapping

were used to identify quantitative trait loci (QTL) and/or

causative mutations involved in the control of flowering

time in cultivated sunflower Helianthus annuus. A panel of

384 inbred lines was phenotyped through testcrosses with

two tester inbred lines across 15 location 9 year combi-

nations. A recombinant inbred line (RIL) population

comprising 273 lines was phenotyped both per se and

through testcrosses with one or two testers in 16 loca-

tion 9 year combinations. In the association mapping

approach, kinship estimation using 5,923 single nucleotide

polymorphisms was found to be the best covariate to

correct for effects of panel structure. Linkage disequilib-

rium decay ranged from 0.08 to 0.26 cM for a threshold of

0.20, after correcting for structure effects, depending on the

linkage group (LG) and the ancestry of inbred lines. A

possible hitchhiking effect is hypothesized for LG10 and

LG08. A total of 11 regions across 10 LGs were found to

be associated with flowering time, and QTLs were mapped

on 11 LGs in the RIL population. Whereas eight regions

were demonstrated to be common between the two

approaches, the linkage disequilibrium approach did not

detect a documented QTL that was confirmed using the

linkage mapping approach.
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Introduction

Plant breeding requires an understanding of the genetic

architecture of agronomic traits, such as yield, grain quality

and resistance to biotic and abiotic stresses. Many of these

traits are quantitative, governed by multiple interactions of

loci with effects that depend on environment. Thus, con-

nection of marker and molecular information to phenotypes

constitutes a major challenge for breeders and molecular

biologists. The most frequently used approach to study this

problem, initiated in the 1980’s (Lander and Botstein

1989), is quantitative trait locus (QTL) mapping, referred

to in this study as linkage mapping. It requires experi-

mental populations derived from a known pedigree, the

simplest of which is a cross between two parental inbred

lines.

Despite the proven usefulness of this technique to

identify many genomic regions involved in complex traits

(reviewed in Mackay 2001), the lack of an accurate method

to localize and estimate the effects of a QTL represents a

serious limitation for its application to marker-assisted

selection (MAS) (Holland 2004). In particular, the accu-

racy of QTL detection depends on the amount of genetic

variability present in the experimental population.

Often presented as an alternative approach, association

mapping, based on a large number of genotypes repre-

senting a broader germplasm, has several advantages over

linkage mapping: (a) better resolution due to the accumu-

lation of historical recombination events, (b) a larger

number of alleles surveyed and (c) the use of already

existing material, such as elite germplasm, of practical

value for breeding programs (Breseghello and Sorrells

2006). These advantages should facilitate MAS, with

respect to the level of linkage disequilibrium (LD), in a

population. However, association mapping has two major

drawbacks compared with linkage mapping. First, it does

not enable the detection of rare variants, which can reduce

the power of this technique, depending on the genetic

architecture underlying the trait of interest. In the case of

the genetics of flowering time, two types of results have

been reported. In Arabidopsis, genes with large effects on

this trait were most commonly detected (Atwell et al.

2010). In contrast, in maize, numerous QTLs with common

or uncommon genes, each explaining a small part of phe-

notypic variation, were detected (Buckler et al. 2009). In

the majority of species, most alleles are rare (Myles et al.

2009) and can remain undetected with association map-

ping. A second common issue that limits the use of asso-

ciation mapping is the occurrence of spurious associations

due to structured populations. This is particularly the case

for adaptive traits such as flowering time, which is strongly

correlated with population structure in Arabidopsis thali-

ana and maize (Aranzana et al. 2005; Flint-Garcia et al.

2005). Statistical methodologies have been developed to

take population structure into account, but they could

restrict the power of association mapping if the population

is highly structured (Zhao et al. 2007). Given the com-

plementary strengths of these detection techniques,

research has been made to analyze results of association

mapping and linkage mapping to combine the advantages

of the two methods: resolution for the former and robust-

ness for the latter (Nordborg and Weigel 2008).

Brachi et al. (2010) validated association peaks detected

for flowering time in Arabidopsis thaliana when QTLs

detected by linkage mapping co-localized with these peaks.

Using this strategy, they were able to distinguish true from

false positives and identify false negatives (causative loci

lost when accounting for the population structure in the

model.). Similarly, combined association and linkage

mapping made possible fine mapping of QTLs in rice

(Famoso et al. 2011) and in wheat (Mir et al. 2012).

Association mapping methods first focused on candidate

gene strategies, based on prior knowledge of the pathway

controlling the trait of interest in model plants. Indeed,

these strategies were guaranteed to have sufficient power,

especially when the LD was high (Yan et al. 2011).

Recently, the development of second generation sequenc-

ing and high throughput genotyping technologies has

enabled considerable progress to be made in genetic

mapping of agronomic traits. With the increasing avail-

ability of markers, the candidate gene approach has

evolved towards whole genome scans, i.e., GWAS (gen-

ome wide association studies), enabling many SNP to be

queried at the same time.

Sunflower (Helianthus annuus L.) is a species for which

massive genomic resources have been recently developed

(Kane et al. 2011). It is the fourth most widely grown

oilseed crop in the world. It is of major economic impor-

tance as it produces healthy oil and has low input

requirements (nitrogen, water and fungicides). Sunflower

production increased by 32 % over the past 20 years,

reaching 32 million tons in 2010 with acreage of 23 million

hectares (FAO). It has also been used as a model species to

study speciation and interspecific hybridization (Rieseberg

and Willis 2007). Moreover, genomic sequence of sun-

flower should be available soon (Kane et al. 2011). High

density genetic maps are now becoming available in sun-

flower (Bowers et al. 2012). These maps should help

genetic dissection of many important agricultural traits.

Numerous linkage mapping studies for most traits,

including flowering time, have been published for sun-

flower (detailed in this study), but only one association

study is available to date, focusing on Sclerotinia head-rot

resistance (Fusari et al. 2012).

Flowering time is a major event in the plant life cycle.

This trait is controlled by both genetics and environmental

1338 Theor Appl Genet (2013) 126:1337–1356

123



stimuli. It is related to genetic adaptation to a range of

abiotic stresses (e.g., drought, light and temperature) and

affects susceptibility to diseases such as Sclerotinia head

rot. It is therefore of great interest to evolutionary biolo-

gists, eco-physiologists and breeders who need to assess

flowering time in studies of crop domestication (Burke

et al. 2002; Wills and Burke 2007; Baack et al. 2008;

Blackman et al. 2011), response to photoperiod (Leon et al.

2001), and relations with other agronomic traits (Mestries

et al. 1998; Leon et al. 2000; Mokrani et al. 2002; Bert

et al. 2003; Poormohammad Kiani et al. 2009). However,

the genetic architecture of this trait remains poorly

understood.

In this study, we combined association and linkage

mapping approaches in sunflower, based on the evaluation

of genotypes per se and/or in testcrosses over several

location 9 year combinations. First, we evaluated the

structure and LD within a large panel comprising elite lines.

Then, we compared statistical models to reduce the con-

founding effects of associations caused by panel structures.

Finally, we combined and compared linkage and associa-

tion results to identify the genetic basis of flowering time.

Materials and methods

Plant material

The linkage mapping study was conducted on a population

of 273 RILs obtained through single seed descent (to at

least F8) from a cross between two INRA lines: XRQ and

PSC8 (Vear et al. 2008). XRQ is a maintainer line origi-

nating from a cross between the founder USDA line HA89

and the Russian open pollinated variety ‘‘Progress’’, which

confers tolerance to phomopsis and resistance to downy

mildew. PSC8 was obtained from a restorer gene pool

improved for Sclerotinia head-rot resistance by recurrent

selection. Both parental lines were included in the associ-

ation panel.

Association mapping was carried out on a core collec-

tion of 384 inbred lines from INRA and sunflower breeding

companies, chosen for its diversity from an initial set of

752 inbred lines (Coque et al. 2008), see also https://www.

heliagene.org/Web/public/core/Core_collections_list.html).

It was comprised both elite lines, parents of commercial

hybrids, and lines with introgressions from several wild He-

lianthus accessions, including H. annuus, H. argophyllus and

H. petiolaris. In this core collection, 176 lines are publicly

available whereas the others are proprietary lines provided by

three breeding companies: Soltis (73 lines), R2N (46 lines)

and Syngenta Seeds (89 lines).

Testcross progeny were obtained by crossing association

panel lines and RILs with one or two of seven testers

according to their status (maintainers of cytoplasmic male

sterility [B-lines] or fertility restorers [R-lines].These tes-

ters were chosen with the purpose of obtaining single

headed, and if possible male-fertile hybrids resembling

modern cultivars. They also were selected for their ability

to confer standard agronomic value and resistance to major

diseases to their hybrids, thus avoiding artifact effects

while at the same time allowing the expression of pheno-

typic variability.

Testers for the RIL were CMS-PGF650 for restorer

genotypes and 83HR4gms for maintainer or unbranched

restorers genotypes. 83HR4gms was bred by introgressing

genetic male sterility into the INRA restorer line 83HR4

(Table 1).

For the association panel, R-lines were crossed with the

two CMS PET1 counterparts of B-line testers (T1 or T3)

while the B-lines were crossed with two R-line testers:

83HR4gms and T2, a proprietary line carrying PEF1

cytoplasmic male sterility (Crouzillat et al. 1991) which it

maintains, although it is a restorer for classical PET1

cytoplasm (Table 2). The groups of B-lines and R-lines

were named B-pool and R-pool, respectively.

Field experiments

For the RILs, testcross hybrid progeny were evaluated in

four locations in 2001, three in 2002 and six in 2010. For

the association panel, there were 15 location 9 year

combinations, (designated as ‘‘environments’’) from 2008

to 2010. While 70 RILs were evaluated on two testers per

environment, the other RIL and association panel hybrids

all had the same tester in any one environment. Each

environment–tester combination or environment was con-

sidered to be a trait for the RIL (Table 1) or association

panel (Table 2), respectively, and was analyzed separately.

Each experiment was formed of blocks, with 24 or 30

entries replicated in two sub-blocks. Each sub-block was

randomized separately and contained two to four check

hybrids.

RILs were also evaluated per se in three additional

environments, two in 2001 and one in 2004. Environments

CF01 and CF04 consisted of single rows of 13–15 plants

per genotype without replication, whereas there were two

replications of 25 plants for CF01_I.

In all trials, flowering time was measured as the number

of days after sowing when 50 % of the plants had started

anthesis.

Phenotypic data analysis

Observations made in 2001, 2002 and 2004 on tes-

ter 9 RIL combinations were first subjected to 2-way

ANOVA to check statistical validity (data not shown).
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Then, to make possible comparisons between all trials, data

were expressed, for each genotype, as a percentage of the

check mean.

In 2010, the data collected in 15 environments for the

association panel and from six environment–tester combi-

nations for RILs were analyzed with ASReml-R (Butler

et al. 2007) using the following mixed model (naı̈ve

model):

Yijk ¼ lþ Gi þ bj þ ck jð Þ þ eijk

where Yijk is the phenotypic observation for the ith geno-

type in the kth sub-block of the jth block, l is the intercept

term, Gi is the genetic effect of the ith genotype considered

to be random, bj is the effect of the jth block, ck(j) is the

effect of sub-block k nested in block j and eijk is the

residual. Block and sub-block effects were treated as fixed.

The naı̈ve model was enhanced in two alternative ways:

(a) by the addition of random effects of row and column for

the ‘‘row 9 column’’ model, or (b) including a first-order

autoregressive process in the residuals to take into account

autocorrelation between neighbor plots for the ‘‘ar1 9 ar1’’

model. To compare these three models, the Aikake crite-

rion was calculated (AIC), and its significance assessed

using log ratio tests between the naı̈ve models and the two

spatial models in succession. For each trait, once the best

model had been selected, the best linear unbiased predic-

tors (BLUP) of genotypes were extracted for the next step

of analysis.

For each trait, broad sense heritability (h2) was calcu-

lated with the following formula h2 ¼ r2
g

r2
gþ

r2
e
r

where rg
2 being

the genetic variance, re
2 the residual variance, and r the

Table 1 Details on environments, testers and effective used for the 23 traits evaluated on RILs

Trait Environment combination Genetic profile of RILsb Testerc Number of RILs

under evaluation
Locationa Years

CF01_83 CF 2001 NR, Mild.R 83HR4gms 115

CF01_PG CF 2001 Rest. CmsPGF650 163

CF02_83 CF 2002 NR, Mild.R 83HR4gms 115

CF02_PG CF 2002 Rest. CmsPGF650 155

SC01_83 SC 2001 NR, Mild.R 83HR4gms 115

SC01_PG SC 2001 Rest. CmsPGF650 154

SC02_83 SC 2002 NR, Mild.R 83HR4gms 115

SC02_PG SC 2002 Rest. CmsPGF650 154

SL01_83 SL 2001 NR, Mild.R 83HR4gms 115

SL01_PG SL 2001 Rest. CmsPGF650 162

RN01_83 RN 2001 NR, Mild.R 83HR4gms 115

RN01_PG RN 2001 Rest. CmsPGF650 163

RN02_83 RN 2002 NR, Mild.R 83HR4gms 115

RN02_PG RN 2002 Rest. CmsPGF650 155

AI10_I AI_I 2010 Rest. CmsPGF650 134

AI10_NI AI_NI 2010 Rest. CmsPGF650 134

GA10_I GA_I 2010 NR PSC8RMgms 110

GA10_NI GA_NI 2010 NR PSC8RMgms 110

AU10_I AU_I 2010 Rest. CmsXRQ 110

AU10_NI AU_NI 2010 Rest. CmsXRQ 110

CF01 per se CF 2001 – – 243

CF01_I per se CF 2001 – – 243

CF04 per se CF 2004 – – 241

The RILs were evaluated per se in 2001 and 2004, and in combination with testers in 2001, 2002 and 2010
a The locations covered the range of environments where sunflowers are cultivated in France, could be irrigated (I) or not (NI), and were

designated as follows: CF Clermont-Ferrand (center), SC Longre (middle west), SL Baziege (south west), RN Villampuy (north), GA Gaillac

(south west), AI Aigrefeuille (middle west), Auzeville (south west). Each trait refers to a {location 9 year} 9 tester (or per se) combination
b When evaluated in combination, a subset of RILs was chosen according to the RILs genetic profile (NR non-branched, Mild.R conferring the

resistance to the race710 of downy mildew, Rest restauration of the male fertility)
c 83HR4gms is a modification of the restorer line 83HR4 that had been converted to genetic male sterility. PSC8RMgms is a modification of

PSC8 with resistance to race 710 of downy mildew and genetic male sterility. Cms XRQ and Cms PGF650 are classical female lines
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average number of replicates per genotype, which was

actually close to the number of expected replicates.

Genetic and residual variances were estimated using the

naı̈ve model to compare trial precisions, independent of

any specific improvements with spatial models. Phenotypic

Pearson correlations and principal component analysis

(PCA) were performed between traits for each type of

material using R (R Development Core Team 2012).

Association mapping

Genotyping

The association panel was genotyped for 12,136 single

nucleotide polymorphism (SNP) markers using the Illu-

mina BeadXpress and Infinium platforms. Polymorphism

was initially identified using three different strategies:

(a) transcriptome sequencing with mRNAseq technology

from samples collected from whole plants, (b) genomic

sequencing of targeted genes involved in hormone signal-

ing pathways, development, stress response or transcrip-

tion, (c) non-targeted genome sequencing of gene spaces.

For genotyping, DNA was extracted from young leaf tissue

with a Qiagen DNeasy 96 Plant Kit using a modified

protocol (Horne et al. 2004). DNA concentrations were

quantified with a Quant-iT PicoGreen dsDNA assay

(Invitrogen, Karlsruhe, Germany). A total of 250-ng

genomic DNA per sample was used to genotype SNP on

the Illumina iScan platform (IntegraGen, Evry, France) or

the Illumina BeadXpress platform (in collaboration with

seed companies). Cluster positions for each marker were

manually adjusted using Illumina GenomeStudio software.

Heterozygous data expected to have low frequencies were

considered as missing data.

A total of 8,844 high-quality SNP showing polymor-

phism across the association panel were retained for sub-

sequent analysis. Eighty lines of the association panel with

suspect genotypic data were discarded, giving a total

dataset of 304 inbred lines for analysis.

Analysis of panel structure

A set of 5,923 SNP markers with less than 10 % missing

data and a minor allele frequency (MAF) greater than 3 %

were selected. Genotypic errors among these markers were

assumed to be negligible above this threshold. Panel

structure was investigated by two methods. First, a model-

based approach implemented with STRUCTURE v2.2

software (Pritchard et al. 2000) was used to assign indi-

viduals to subpopulations according to correlated allele

frequencies and admixture parameters. The algorithm was

run for a number of subpopulations varying between one

and ten. Ten replications for each subpopulation number

were performed, with a burn-in time of 50,000 and 100,000

Table 2 Details on environment, testers and effective used for the 15 traits evaluated on the association panel

Trait Environment combination Tester for B-pool Tester for R-pool Number of lines

under evaluation
Location Years

AI08_I AI_I 2008 83HR4gms T1 171

AI08_NI AI_NI 2008 83HR4gms T1 172

CO09_I CO_I 2009 83HR4gms T1 262

CO09_NI CO_NI 2009 83HR4gms T1 262

GA09_I GA_I 2009 83HR4gms T1 261

GA09_NI GA_NI 2009 83HR4gms T1 260

LO10 LO 2010 83HR4gms T1 270

AI09_I AI_I 2009 T2 T3 263

AI09_NI AI_NI 2009 T2 T3 263

VE09_I VE_I 2009 T2 T3 257

VE09_NI VE_NI 2009 T2 T3 257

CA10 C1 2010 T2 T3 290

CO08_I CO_I 2008 T2 T3 230

CO08_NI CO_NI 2008 T2 T3 229

SE10 SE 2010 T2 T3 272

The traits are designated using the same principles as in Table 1. Within a same location 9 year combination, the lines of the association panel

were evaluated in testcross with the testers 83HR4gms or T2, for the lines belonging to the B-pool (See ‘‘Materials and methods’’), and with the

testers T1 or T3 for those belonging to the R-pool
a The locations were designated as follows: AI Aigrefeuille (Middle West), CA Castelnaudary (South West), CO Cornebarrieu (South West),

GA Gaillac (South West), VE Verdun (South West), LO Loudun (Middle West), SE Segoufielle (South West)
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iterations. Evanno’s criterion (2005) was applied to select

the most likely number of subgroups. FST values similar to

classical Wright’s FST (1951) were used to estimate

divergence between groups. Membership probabilities for

each genotype in each of these subgroups were used to

construct the Q matrix. Second, to perform a PCA on this

dataset, each marker was centered by subtracting the

average marker value across all samples and normalized by

dividing by the theoretical standard deviation of the marker

data at Hardy–Weinberg equilibrium (Patterson et al.

2006).

The significance of principal components was evaluated

with a test based on the Tracy–Widom distribution. A PC

matrix was established based on genotype coordinates of

the components selected. The relatedness between all pairs

of individuals were estimated using the Alikeness In State

estimator (AIS) in Cocoa software (Maenhout et al. 2009),

which comprised the Kais matrix. To assess the relative

performance to correct panel structure, Q, PC and Kais

matrix values were successively specified as covariates in

association models.

In addition, a structure effect denoted ‘‘Tester’’, due to

the status (B/R) of the lines, was included in model com-

parisons. As tester lines used to obtain hybrids were dif-

ferent between B and R lines, the Tester effect did not

dissociate the effects of B or R status from the particular

genotypic effect(s) of the tester(s). In each model, the

structure was considered to exert fixed effects, and the

genetic background captured by Kais matrix was considered

to be random, following the recommendations of Yu et al.

(2006). A summary of all the models compared is pre-

sented in Table 3. Bayesian information criterion (BIC)

and the p value of the significance of the fixed effects were

used to determine the best-fitting model for each trait. The

ability of each model to control for type I errors was

compared by examining p values of association tests on a

set of 1,000 random markers using ASReml-R. Finally,

Student’s test in R was used to check whether the mean of

each phenotypic trait differed significantly between

subpopulations.

Linkage disequilibrium

The resolution of association mapping studies depends on

the pattern of linkage disequilibrium (LD). For LD esti-

mation, we used a set of 1,874 SNP mapped on the pro-

prietary BIOGEMMA consensus map and genotyped on

the association panel, with a MAF of 5 % and missing data

of \10 %. LD was calculated for each chromosome

between all pairs of markers using classical statistics (r2,

squared correlations, between two loci, here in their hap-

loid state) and a new measure correcting for biases caused

by structure and relatedness between individuals obtained:

rvs
2 (Mangin et al. 2011). Classical and new LD statistics

were plotted as a function of genetic distance to estimate

LD decay per chromosome, using Hill and Weir’s model

(1988), with a threshold of 0.2.

Association tests

Association mapping was based on a set of 6,645 SNP,

including markers used for structure estimation and

markers localized in candidate genes. This sample was

taken from the validated set of 8,844 SNP after removing

data containing more than 10 % missing observations and

MAF lower than 5 %. Association between single loci and

traits was carried out in Emma (Kang et al. 2008) using the

two mixed models that correct for genetic relatedness

between lines: ‘‘Kais’’ and ‘‘Kais ? Tester’’. The full sta-

tistical model is:

Table 3 Summary of models tested for association detection

Model Description Covariate specification

Naı̈ve No correction for population structure –

Fixed effects

Q Population structure inferred by STRUCTURE Proportion of genome assigned at each group (g1, g2, g3)

PC Population structure resulting from PCA Coordinates on principal components

Tester Structure of breeding pools (B-pool, R-pool) Binary (0/1)

Random effects

Kais Relatedness as estimated by alikeness in state

coefficient

Matrix of variance–covariance proportional to the pairwise AIS

matrix

Mixed

Kais ? Q Mixed model with population structure as fixed effects and relatedness as random effect

Kais ? PC

Kais ? Tester
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GBLUP
i ¼

X

c

Xicac þMilhl þ ui þ ei

Gi
BLUP is BLUP for ith hybrids, Xic is tester category (0–1),

ac is effect of tester category c, Mil is genotype of the ith

hybrid at locus l, hl is effect of locus l. ac and hl are con-

sidered to be fixed effects. ui is the random polygenic effect

modeling genetic relatedness with Var ðuÞ ¼ r2
uKais where

Kais is an AIS matrix and Var ðeÞ ¼ r2
e .

A false discovery rate (FDR) (Benjamini and Hochberg

1995) was applied on p values to correct for multiple

testing. Variance explained by each marker was estimated

using the RLR
2 statistics described in Sun et al. (2010).

Linkage mapping of QTLs

A consensus genetic map was built using the method

explained in Vincourt et al. (2012) and QTLs detected by

linkage mapping in the RIL population were designated

LM-QTL in this study. This consensus map and the cor-

responding map for the RIL population were produced

from 619 and 517 public markers, respectively, of which

respectively 345 and 285 were SNP (Supplementary File 1

also available at https://www.heliagene.org/Web/public/

Consensus_INEDI_FUxPAZ2_V1/mapping_INEDI_FUxP

AZ2_2012-07.html). QTLs were detected for each trait

(environment-tester combination) with MCQTL v.5.2.4

(Jourjon et al. 2005) using iterative composite interval

mapping (Charcosset et al. 2000) with the model:

GBLUP
i ¼ lþ

Xn

l¼1

X2

g¼1

P Gl
i ¼ gjMi

� �
bl

g þ ei

where Gi
BLUP is the BLUP for the ith RIL, l is the global

mean, P Gl
i ¼ gMi

� �
is the probability of individual i hav-

ing genotype g at QTL or cofactor locus l given the whole

marker information denoted Mi. bg
l is the mean of genotype

g at locus l and ei is the residual.

The statistical significance of QTLs was assessed using

the MCQTL test, which is equal to -log (p value (F test)),

as described in the MCQTL version 5 reference manual

(http://carlit.toulouse.inra.fr/MCQTL/). A genome-wide

type I error rate of 0.05 was applied, estimated after per-

forming 1,000 permutation tests for each trait. QTL con-

fidence regions were determined using a two-LOD support

interval.

Overlap between linkage and association signals

An 8,235 marker proprietary consensus map developed by

BIOGEMMA (unpublished data) served as a reference to

project the 517 public markers and the detected QTLs

using BioMercator v4 (Arcade et al. 2004). When possible,

associated markers were located on this map. For those

unmapped, linkage disequilibrium (rvs
2 ) with all positioned

SNP was calculated to place the markers. Unmapped SNP

were assigned to the same position as the mapped SNP that

was in maximum LD if the LD statistic was above a

threshold of 0.1. The overlap between detected QTLs and

association signals was tested statistically according to

Tian et al. 2011. The total genome distance covered by a

QTL over the genome size (in centiMorgans, cM) was

computed to determine the probability of an SNP falling

into a QTL support interval. When several QTLs over-

lapped, the largest interval was chosen. The hypothesis that

associated SNP was placed with a larger probability in a

QTL region than was expected by chance was tested using

a binomial distribution.

In addition, LD statistics rvs
2 between markers positioned

in regions where QTLs overlapped with associated markers

were used to build LD heat maps from a modified code of

snp.plotter function (Luna and Nicodemus 2007).

Results

Phenotypic data analysis

The period from sowing to flowering time was measured

on the association panel and RILs in a variety of envi-

ronments. As indicated above, flowering time in each

environment (for the association panel) or each environ-

ment–tester combination (for the RIL population) was

considered to be a separate trait. In a first step, statistical

analyses were made on the 15 traits obtained on the asso-

ciation panel and the six traits obtained in RILs in 2010.

Statistics for the naı̈ve model, i.e., including only fixed

blocks and sub-block effects with a random genotype

factor, were computed (Supplementary File 2). Genotypic

variance differed significantly from zero for all traits.

Broad sense heritability ranged from 0.55 to 0.96, with a

lower mean (0.68) for the RILs than for the association

panel (0.84). Spatial models displayed a significantly better

fit than the naı̈ve model with respect to the AIC criterion.

The model ‘‘ar1 9 ar1’’ was more appropriate in 13

environments, while the ‘‘row 9 column’’ model per-

formed better in six environments and the naı̈ve in one.

However, BLUP extracted from these three models were

also highly correlated (data not shown). We selected BLUP

from the best model to perform further analysis.

Correlations between the 15 association panel traits

were all significant (p \ 0.001; Supplementary File 3). A

higher mean correlation between traits derived from the

environments allocated to testcrosses made with the same

pair of testers was observed: 0.66 and 0.72 for the group of

83HR4gms/T1-related traits and for the group of T2/T3-
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related traits, respectively, to be compared with 0.49

between the two groups. This result was also illustrated by

the PCA (Fig. 1). We still observed a large amount of

variability in flowering time occurrence and distribution

within each group. For example, T2/T3 group showed

flowering time differences spanning 24 days.

Correlations between traits recorded on RILs (complete

set of 23 traits, Supplementary File 4) were less significant.

The mean correlation coefficient between traits recorded on

hybrids involving the tester 83HR4gms was 0.51, com-

pared to 0.56 for the tester CmsPG650. Similarly to what

we observed for the association panel, on the second

principal axis, PCA revealed a clear distinction between

traits derived from different testers, with 83HR4gms- and

CmsPG650-related traits being the most distant.

Despite of the overall good correlation between traits,

we chose to conduct association and linkage mapping for

each trait independently to capture specific interactions

associated with a particular tester or environment.

Population structure

Using the Evanno’s criterion (delta Evanno), the model-

based STRUCTURE approach distinguished three probable

groups, g1–g3, in the panel, as illustrated in Fig. 2a, b. The

second criterion, i.e., the distribution of the log likelihood

of the data, was not very meaningful because it did not

reach a plateau. Two of the three groups exhibited by

STRUCTURE were made up of wild introgression lines,

belonging either to a set of 29 B-lines for the ‘‘g1 group’’ or

to a set of 36 R-lines for the ‘‘g2 group’’. A total of 27 over

29 lines were assigned to g1, with a mean percentage of

0.98, and 22 lines over 36 were assigned to g2, at a

percentage of 0.90. The third group (‘‘g3’’ group) contained

a majority of public B-lines. The g1 and g2 groups pre-

sented higher FST values (0.57 and 0.40, respectively) than

g3 (0.07). The groups inferred by STRUCTURE are also

highlighted in the PCA (Fig. 2c), where in addition to g1

and g2, g3 appears clearly in the PCA as a dense block of

related individuals. For 151 inbred lines, there was no

evidence of clear assignment to one of these three groups at

a threshold of 0.80. The set of these 151 lines will be

named g4 thereafter for convenience.

R/B line divergence was more obvious when using PCA

analysis (Fig. 2c) than in the STRUCTURE analysis.

Based on the Tracy–Widom statistics (Patterson et al.

2006), the first three principal components were considered

to be significant and explained 13.21 % of the total vari-

ability. The first principal component, explaining 5.91 % of

the variability, separated the B-pool on the right side with

the g1 group on top and the R-pool on the left side with the

g2 group on top.

Models comparison for association mapping

The majority of traits presented a mean significant differ-

ence between R- and B-lines, as well as between groups

detected by STRUCTURE, highlighting the need for

structure correction in association tests. Thus, a total of

eight models were compared for their ability to correct

stratification for each trait (Table 3). In the first step,

marker information was not taken into account when

exploring BIC criteria (Table 4) and p values of fixed

effects (Supplementary File 5). Among the eight models

compared, two reached the lowest BIC for most of the

traits, including the ‘‘Kais’’ model for seven environments

Fig. 1 Principal coordinate plots for the flowering time phenotypic

traits recorded on the association panel (15 traits, a) and on the RIL

population (23 traits, b). Percentages in parentheses refer to the

proportion of variance explained by first and second principal

coordinates (color figure online)
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Fig. 2 Stratification of the 304 association panel lines. a Log-

likelihood and delta Evanno statistics for a number of putative

populations ranging from 1 to 10, b STRUCTURE output for three

groups, c top two principal components in PCA. Percentages in

parentheses refer to the proportion of variance explained by the

principal coordinate. Symbols represent the two breeding pools (x for

R lines and filled triangle for B lines). In b and c, each genotype is

colored according to its STRUCTURE group (color figure online)

Table 4 Comparison of Bayesian information criteria (BIC) among eight models

Traits Naı̈ve Fixed effects Random effects Mixed effects

Q PC Tester Kais Kais ? Q Kais ? PC Kais ? Tester

AI08_I 528.35 526.73 529.14 515.93 513.61 523.18 528.17 511.46

AI08_NI 410.47 417.78 422.13 410.24 409.08 419.94 425.35 412.02

AI09_I 1,283.27 1,258.12 1,260.24 1,249.42 1,227.81 1,238.26 1,241.99 1,221.57

AI09_NI 1,221.61 1,194.95 1,198.11 1,184.06 1,145.96 1,156.85 1,161.30 1,138.55

CO08_I 1,038.25 1,031.42 1,036.03 1,032.15 1,003.58 1,014.32 1,019.02 1,008.59

CO08_NI 1,051.91 1,049.51 1,054.98 1,054.94 1,018.95 1,030.00 1,034.65 1,024.43

CO09_I 888.63 889.51 894.05 881.06 877.57 888.51 893.89 879.44

CO09_NI 941.38 926.07 929.03 918.22 916.22 926.24 930.62 915.62

GA09_I 988.50 947.65 946.65 937.98 941.09 947.65 949.88 933.47

GA09_NI 946.87 907.37 909.53 902.56 901.20 908.62 912.24 896.73

VE09_I 1,155.77 1,165.35 1,169.99 1,161.12 1,120.86 1,131.60 1,137.58 1,126.38

VE09_NI 1,180.22 1,189.04 1,192.37 1,185.16 1,173.77 1,185.10 1,190.19 1,179.23

CA10 1,409.67 1,411.75 1,416.63 1,399.70 1,343.59 1,353.56 1,359.90 1,344.40

LO10 1,081.28 1,038.51 1,042.78 1,023.55 1,042.25 1,045.34 1,049.39 1,029.12

SE10 1,072.14 1,080.56 1,085.58 1,074.08 1,075.05 1,086.33 1,091.69 1,079.79

Values in italics correspond to the lowers BIC for each trait
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and the ‘‘Kais ? Tester’’ model for six environments. BIC

values were found to be quite similar between these two

models.

We compared p values of fixed effects in six out of the

eight models (‘‘Kais’’ and naı̈ve models were excluded).

Significant structure effects were observed for most of the

traits in the fixed models. When relatedness was taken into

account in these models, p values of STRUCTURE and

PCA covariates became non-significant (except for LO10).

In contrast, the Tester effect remained significant for six

traits, including those best fitted by the ‘‘Kais ? Tester’’ or

‘‘Tester’’ models, according to the BIC criterion. For

CO09_NI, the Tester effect was not significant, although

this trait showed best fit with the ‘‘Kais ? Tester’’ model.

These results show that principal components and

STRUCTURE covariates were not needed to correct for

structure effects, as kinship probably retained a large

amount of this information.

In the second step of analysis, we incorporated a set of

1,000 SNP into the investigated models to search for an

excess of significant associations over those predicted by

the null hypothesis. The quantile–quantile (Q–Q) plots

looked very similar between traits; a representative

example is presented in Fig. 3. For the naı̈ve association

model, the rate of false positives was clearly inflated,

suggesting that correction was necessary. Models specify-

ing structure effects performed better, and only models

including kinship matched the diagonal, showing good

control of false positives. The above analysis demonstrates

that both the ‘‘Kais’’ and ‘‘Kais ? Tester’’ models, consid-

ered to be the best models according to BIC and p value

criteria, gave similar reductions in false positives. As a

consequence, we decided to conduct association tests using

these two models.

LD estimation

We first investigated the pairwise LD for each chromosome

in the entire panel, with (Mangin et al. 2011) or without

correcting for B/R line structure and kinship confounding

effects. Mean LD decay, defined by the Hill and Weir

model (1988) with a threshold of 0.20, was estimated

across each LG. The value decreased from 0.41 cM with-

out correction to 0.14 cM with kinship and structure cor-

rection. As illustrated in Fig. 4a for LG08, long distance

pairwise LD (over 10 cM) was not maintained after cor-

rection. However, we observed considerable differences in

LD decay, ranging from 0.08 to 0.26 after correction,

between LGs. LG08 and LG10 presented a specific pattern,

with high LD values when no correction was applied

(Fig. 4b).

In a second step, we computed the corrected LD sta-

tistics accounting only for kinship effect: rvs
2 . This was

done separately for the R-pool (121 accessions) and the

B-pool (183 accessions), as maintainer and restorer lines

are considered to belong to distinct breeding pools. For

most chromosomes, the B-lines presented a mean decay of

LD that was similar to that of the entire panel. In contrast,

the R-lines showed higher LD values, with a mean decay of

0.31. LGs having the largest LD differences between the

two breeding pools, with a higher value for R-lines pool,

included chromosomes 8, 10, 13, 14 and 17 (Fig. 4c).

Mapping results

Linkage mapping

QTLs were detected for 20 out of 23 traits. The QTLs

accounted for 6–29 % of the phenotypic variation, with an

additive effect varying from 0.1 to 5.0 days (Detailed statis-

tics in Supplementary File 6, linkage map with QTL available

at https://www.heliagene.org/Web/public/linkage_mapping_

FT_INEDI.html). Considering the 2001 and 2002 environ-

ments in which hybrids were tested, the crosses with

CmsPGF650 led to the identification of more QTLs (23) than

for those with 83HR4gms (13). For environments where the

two testers were used, we identified QTLs on both of them,

especially on linkage groups 6 (LG06) and LG14 (Fig. 5). In

contrast, several regions were only detected with one tester.

For example, the LG09 region was identified in material

crossed to the tester CmsPGF650. This region, with an aver-

age confidence interval of 6.60 cM, was highly significantly

associated with nine traits (average MCQTL test = 9.44 and

explained variance of 24 %), with allelic effects reaching

Fig. 3 Cumulative p value distribution of the association scan over a

set of 1,000 random SNPs. The same eight models as in Table 4 were

compared for the trait AI09_I (color figure online)
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5 days. In addition to this QTL, three regions were par-

ticularly highlighted by overlapping of QTL support inter-

vals for a large number of traits. LG06 contained a cluster

of QTLs detected in 12 environments overlapping in a

21-cM support interval. A cluster of QTLs corresponding to

10 environments and overlapping within a 33 cM support

interval was found on LG14. LG12 presented a smaller

confidence region of 14 cM, where QTLs for seven envi-

ronments were mapped. While the allele conferring late

flowering were derived from XRQ for the QTL located on

LG09, LG12 and LG14, it came from PSC8 for the QTL

located on LG06. Fourteen QTLs were detected in envi-

ronments where RILs per se were evaluated. Overall, they

presented a higher significance level than the rest of QTLs

detected (MCQTL test = 8.00 vs. 5.3) but with a lower

additive effect (0.12 vs. 2.10 for the QTL detected on

hybrids). Compared to results obtained for hybrids, new

regions appeared to be involved in the flowering trait

evaluated on RILs per se on LG05 and LG10, while regions

on LG06, LG08, LG12 and LG14 were confirmed.
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Fig. 4 a LD statistics plotted

over genetic distance (cM) on

LG08: classical LD (left), r2
vs

(LD corrected from relatedness

and B/R line structure, right);
b distribution of classical LD

and r2
vs statistics across

chromosomes; c distribution of

r2
vs across chromosomes for the

entire panel and for each

breeding pool (B-lines and

R-lines) (color figure online)
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Linkage disequilibrium mapping

Figure 6 presents the results of marker trait association

analysis for ‘‘Kais’’ and ‘‘Kais ? Tester’’ models and their

localization on the proprietary map. Eleven of the 15 traits

presented significant associations at the FDR threshold of

10 %. Most were detected using both models. However,

several signals found associated with a trait using the

‘‘Kais’’ model were not identified using the ‘‘Kais ? Tester’’

model.

To summarize, 11 regions on 10 LG were found to be

associated with flowering time. One of these regions, on

LG09, was noticeable due to the number of traits (6) for

which an association was detected. In this region, very low

p values were found for some of the markers. For example,

SNP HS117598 presented a p value of 7.65 9 10-10 and

additive effect of 3 days on flowering time in the AI09_I

environment. Moreover, the markers spanned an interval

greater than 2 cM, thus showing the linkage disequilibrium

in this region. The allelic effect was found in the same

direction for each trait. Apart from this region and the three

markers mapped on LG01, 04 and 10, respectively

(detected in two environments each), all association signals

were specific to one environment. We also observed poor

consistency in mapping results between highly correlated

environments, such as those differing only by irrigation

treatment. Mapping results were not consistent between

traits obtained with 83HR4gms/T1 and those obtained with

T2/T3, as only one marker on LG01 was detected in both

groups of traits. Details of MAF, p values, allelic effects

and variance explained for each SNP detected (range 4.5–

13.3 %) are provided in supplementary data (Supplemen-

tary File 7).

Overlap between association signals and LM-QTL

SNP identified using association mapping were compared

with the positions of QTLs detected in the RIL popula-

tion. For this purpose, a consensus map was built by

projecting the LM-QTLs detected on the public map onto

the proprietary map. The significance of overlapping

between association peaks and LM-QTLs was assessed as

follows. We first identified independent SNP among

the 27 SNP found associated with traits by calculating LD

rvs
2 (corrected statistics) for each pair of markers. Among

the 13 SNP considered to be independent rvs
2 (threshold of

0.1) and mapped by recombination or LD on the con-

sensus map, nine were positioned in LM-QTL support

intervals. Binomial tests proved that the overlap observed

was significant (p = 3.49 9 10-6), compared to the

probability of an SNP falling into an LM-QTL region by

chance (0.17).

A total of eight chromosomes carried QTLs on which

associated SNP were also detected (Table 5). Figure 7

describes the pattern of LD combined with associated p

values for two regions of interest: LG09, which displays

highly significant associations consistent across environ-

ments, and LG10, on which one marker is positioned in a

candidate gene for flowering time (detailed in the discus-

sion). On the latter chromosome, two markers were sig-

nificantly associated with this trait. One of these markers

was not localized in the QTL regions (Fig. 7a) but was in

LD to the second marker.

Fig. 5 Heat map of detected QTLs. Only chromosomes (columns)

and traits (row) where QTLs were detected at a threshold of 3.80 are

represented. A color scale is used to indicate QTL significance

(MCQTL test). Positive values (orange and red) denote a later

occurrence of flowering time for RILs carrying PSC8 alleles (color

figure online)

Fig. 6 Heat map of significantly associated markers mapped (or

localized with LD) on the consensus map for each trait and both tested

models (‘‘Kais’’ or ‘‘Kais ? Tester’’). A color scale is used to indicate

SNP significance based on p values (-log 10 (p value)) (color figure

online)
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Discussion

Panel structure and breeding history

As a prerequisite for association mapping, panel population

structure was assessed using a PCA and a Bayesian model

in STRUCTURE software. Results with the two analyses

were quite similar and confirmed by the significant corre-

lation between the Q and P matrices (data not shown).

The panel appeared to be made up of three groups

(Fig. 8), the two most divergent groups g1 and g2 con-

tained respectively B and R lines. The proximity among the

g1 lines in one hand and among the g2 lines in other hand

is probably due to founder effect which arose from the

introgression of wild Helianthus accessions into an elite B

line and an elite R line, respectively. This suggests that it

should be possible to enhance genetic variability in both B

and R gene pools by increasing the use of wild Helianthus

accessions in breeding programs. It should be pointed out

that the two well-known USDA lines HA89 and RHA274

were located in the g1 and g2 groups, respectively.

The third group (g3) was constituted with a large pro-

portion of the public maintainer lines (B-lines).

The other genotypes, both public or proprietary elite,

maintainer or restorer lines were not assigned to a group by

STRUCTURE, but for clarity will be designated group g4

(g4B and g4R for B lines and R lines, respectively).

The group g3 of B-lines showed a lower level of

divergence from g4 compared to g1 and g2. In addition, g3

presented less diversity than the public R lines belonging to

g4R as shown in Fig. 2b. This is in agreement with

observations of Mandel et al. (2011), who used 86 of the

set of public lines included in our panel as part of a col-

lection of 433 cultivated accessions. Taking into account

genotyping data from two SSR markers per linkage group,

these authors observed less diversity among B lines than

among the restorer lines (‘‘INRA RHA’’ in their work). A

large fraction of the restorer lines involved in breeding

programs were derived from crosses between one of the

main sources of fertility restoration genes (wild H.annuus

carrying Rf1) like RHA274, and B lines (or their CMS

counterpart). The founder effect of the line RHA274 could

Table 5 Significant markers detected with association mapping and mapped within the QTL regions found by linkage mapping

LG Map

position

Marker QTL interval

on the

consensus map

Arabidopsis

homolog

locus

Arabidopsis

homolog gene

name (if any)

Arabidopsis homolog TAIR description

LG01 33.5 HS136120 -6.00–72.71 AT5G18120 APRL7 Encodes a protein disulfide isomerase-like (PDIL) protein, a

member of a multigene family within the thioredoxin

(TRX) superfamily. This protein also belongs to the

adenosine 50-phosphosulfate reductase-like (APRL)

group.

LG05 44.8a HS107108 34.22–66.11 AT3G17590 BSH Encodes the Arabidopsis homolog of yeast SNF5 and

represents a conserved subunit of plant SWI/SNF

complexes.

LG06 32.2 HS113607 18.8–35.7 Not found

LG08 29.0 HS097037 -20–30 AT1G75560 Zinc knuckle (CCHC-type) family protein

LG09 31.3 HS117040 27.08–35.97 AT1G67430 Ribosomal protein L22p/L17e family protein

LG09 31.6 HS090401 AT1G24030 Protein kinase superfamily protein

LG09 31.6 HS117598 AT1G67580 Protein kinase superfamily protein

LG09 31.8 HS095606 AT5G50260 CEP1 Cysteine proteinases superfamily protein

LG10 53.2 HS061549 41.12–66.8 AT3G63010 GID1B Encodes a gibberellin (GA) receptor ortholog of the rice GA

receptor gene (OsGID1). Has GA-binding activity,

showing higher affinity to GA4. Interacts with DELLA

proteins in vivo in the presence of GA4.

LG10 57.2 HS073886 AT5G47780 GAUT4 Encodes a protein with putative galacturonosyltransferase

activity.

LG12 34.8 HS067214 45–66.8 AT3G14310 PME3 Encodes a pectin methylesterase, targeted by a cellulose

binding protein (CBP) from the parasitic nematode

Heterodera schachtii during parasitism.

LG15 42.2a HS057257 36.48–51.04 Not found

Only markers corresponding to different genes are indicated. Map positions refer to the consensus map built by projection of the public map onto

the proprietary map. The putative Arabidopsis thaliana homologs were obtained on TAIR by blasting (BLASTX) the Helianthus annuus contig

sequence carrying the SNP
a These markers were mapped on the consensus map based on their LD with mapped markers
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Fig. 7 LD heat map with

corrected LD statistics ðr2
vsÞ.

Only QTL regions (shaded
area) and markers tested in

association mapping with their

p values are represented.

Bonferroni (lower) and FDR

thresholds are indicated by

dashed lines. a LG10, over

10.7 cM b LG09, over 18 cM

(color figure online)
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explain why the R lines belonging to g4 have been found

wide spread between RHA274, found close to g2, and more

or less closely related to the g3 B line group.

In contrast, the large distance between HA89, which was

derived from the Russian open pollinated population

VNIIMK 8931, and the g3 group suggests that, in our

panel, the set of B lines is divided into two subsets. One of

these is more or less related to the HA89, and the other (g3)

could be related to another particular founder effect which

is not known. According to the pedigree information we

have, this founder could have originated from Eastern

European breeding programs, with either specific selec-

tions from Russian open pollinated varieties other than

VNIIMK 8931, or introgressions from wild Helianthus, or

exotic germplasm very different from g1 and g2.

Divergence between B and R elite gene pools has previ-

ously been mentioned (Gentzbittel et al. 1994).The fact that it

did not appear as a major factor of our panel when using

STRUCTURE is probably due to the presence of introgres-

sion lines. In addition, the three groups revealed by

STRUCTURE or the PCA did not provide the best model for

association detection. Indeed, the best models were obtained

with the nearly statistically equivalent ‘‘Kais’’ or ‘‘Kais ?

Tester’’ models. Although these two models aimed at cor-

recting different layers of stratification, the BIC values were

quite similar. Furthermore, both of these models led to a good

control of the rate of false positives and they detect the same

most significant SNP. All but two of the detected associations

were confirmed to be true positives, as they were located

within regions detected through linkage mapping. It was not

possible to check the validity of the two remnant associations,

as the RIL parents were not polymorphic at these loci.

These results show that kinship probably accounted for

most of the information provided by the structure of the

panel. They also validate our strategy of keeping a sub-

optimal model such as ‘‘Kais’’ for association detection.

Linkage disequilibrium

Because the resolution of association mapping depends

on the LD between genotyped markers and causative

polymorphism, it was necessary to understand the nature of

LD in our panel. LD decay is a good predictor of what is

expected, given the present marker density. Standard

measurements of LD have been described in the literature

(Flint-Garcia et al. 2003). However, long range LD, which

results from the presence of subpopulations with different

allelic frequencies, can bias these estimates. We therefore

used the modified statistics proposed by Mangin et al.

(2011). This modified estimation, when compared to clas-

sical r2 statistics, lead to a considerably increased rate of

LD decay by neglecting r2 between unlinked loci. When

considering our design, this modification took kinship and

the B/R differentiation into account. This is reminiscent of

the ‘‘Kais ? Tester’’ model which was found overall the

best for association detection. Moreover, we investigated

the LD decay in each breeding pool using the LD statistics,

thereby correcting for the relatedness between lines in each

group.

When considering all of the lines together, large varia-

tions of LD were observed between linkage groups. The

extent of LD is influenced by many factors, such as

recombination and selection (Gaut and Long 2003) through

hitchhiking with selected loci (Maynard Smith and Haigh

1974; Mackay and Powell 2007). The breeding history of

the parental lines of sunflower hybrids might have resulted

in a high mean LD on LG08 and LG10 compared to other

LGs. Indeed, the recessive branching gene is located on

chromosome 10. Thus, positive or negative selection for

this trait, depending on the breeding purpose (B or R lines,

respectively), might have caused the extent of LD near this

locus. Similarly, a cluster of resistance genes to downy

mildew (including Pl2, Bouzidi et al. 2002), mapped on

LG08, has been an important target of selection, particu-

larly for R lines during the 1975–1995 period.

Even using the corrected statistics, the overall LD in our

panel (0.14 cM at 0.20 threshold) remained high. It

extended over approximately 272 kb, with a 3.5-Gb gen-

ome and a genetic map of 1,800 cM. Comparisons with

previous studies are difficult. LD extends from 50 to

250 kb in Arabidopsis thaliana, a self-pollinated species

(Nordborg et al. 2005). In crops, elite lines can present a

slower decay of LD (Rafalski 2002). For example, in

maize, different studies have shown that LD persists over

1 kb for landraces (Tenaillon et al. 2001) to 500 kb for

commercial elite inbred lines (Jung et al. 2004).

Fig. 8 Simplified representation of genetic groups according to

Fig. 2b (color figure online)

Theor Appl Genet (2013) 126:1337–1356 1351

123



In sunflower, Kolkman et al. (2007) analyzed a set of ten

elite inbred lines and two wild accessions and estimated

LD decay for 30 loci. In this study, LD was found to extend

over 5,500 bp for a r2 threshold of 0.32, suggesting that the

threshold we used in this study would have led to a larger

extent of LD. Fusari et al. (2008) assessed the LD over 28

candidate genes (\1 kb) in a panel of 19 elite inbred lines.

They estimated that LD decays over 643 bp for an r2 of

0.64 in the entire set or 0.48 in one of the subpopulations

identified by STRUCTURE. This result highlights the need

to take into account the presence of subpopulations when

estimating LD. These earlier studies assessed LD over

short distances (\1 kb for the latter), whereas we investi-

gated the LD in a broader sample that accounted for

structure. A slow LD decay usually confers poor resolution

for association mapping but requires fewer markers. In this

study, given the LD estimated, 12,857 SNP would be

required to cover the genome, but we only met half of this

requirement.

On all LGs, the LD was found to decay more rapidly in

the entire panel than within the B or R group. When con-

sidering all of the lines together, because selection pres-

sures were different for B and R lines depending on trait, a

different number of recombination events may have

occurred for B lines and for R lines. Second, estimates of

within-population rates of LD decay are subject to much

larger standard errors than those based on whole popula-

tions, due to the smaller number of polymorphic sites

(Ingvarsson 2005).

Mapping results

Most significant associations were specific to a set of tes-

ters (83HR4gms/T1 or T2/T3). The consistency of map-

ping results between the testcross results is of great

importance, especially when they are applied to breeding

programs (Melchinger et al. 1998). Among the hypotheses

that explain the lack of common QTLs between testers, the

most common is that dominant alleles of tester lines,

especially when they are elite lines (Hallauer and Miranda

1988; Austin et al. 2000), can exert masking effects. In the

testing design we used, only dominant alleles from the

panel are expected to be detected when combined with

recessive alleles from the testers.

In the linkage mapping study, rather low correlations

between environments were observed, while a relatively

high congruency was found between the detected QTL.

Due to this congruency, shorter interval supports for con-

gruent QTL were found when running the QTL detection

on the year or tester averages (data not shown). In contrast,

in this association study, even when raw correlations

between environments where high r2 (values ranging

0.42–0.93), only a few signals were repeated across

environments. In an attempt to explain this intriguing

result, we first examined the impact of the panel related-

ness to the high raw correlations. Using an approach sim-

ilar to that of Mangin et al. (2011), we calculated a

modified r2 using the kinship matrix K as a metrics. These

modified r2 values were considerably lower than raw r2

values (0.00–0.58). This suggests that kinship—which also

accounts for B-lines vs. R-lines—drove the common

responses of the panel across the environments, whereas

association peaks were the driving forces behind geno-

type 9 environment interactions. However, this does not

explain why we found, in the linkage mapping study, lower

correlations between environments together with more

congruency of QTL. It should be pointed out that in the

association study, only hybrids between B lines and R-type

testers (83HR4gms or T2) or between R lines and B-type

testers (T1 or T3) were evaluated (‘‘unrelated’’ context). In

contrast, each RIL involved in the linkage mapping study is

a patchwork including B and R background. This patch-

work was evaluated either in testcrosses with B-type and

R-type testers, or per se, thus leading at least to local

B 9 B or R 9 R combinations (‘‘related’’ context). On

another cross-pollinated species (Medicago sativa), it has

been shown that part of the genetic variability expressed

differs between ‘‘related’’ and ‘‘unrelated’’ contexts (Gal-

lais 1984). Moreover, hybrids (‘‘unrelated’’ context) gen-

erally show better stability across environments, in the

sense of Allard and Bradshaw (1964), than inbred lines

(‘‘related context’’). This could explain why testcross data

did not result in the same level of correlation between

environments in the association study and in the linkage

mapping study. Finally, we hypothesize that the covariance

between environments in the linkage mapping study, which

is still significant as shown in Fig. 1b, accounts for con-

gruency between QTL.

All together these results indicate that despite its well-

documented weakness, the linkage mapping approach is

still relevant, because it is robust when relevant genetic

variability exists between the parental lines of the RIL

population.

Recently, several studies integrating association and

linkage mapping have demonstrated the power and reso-

lution of this approach to identify loci of interest. These

joint-linkage association mapping methods are based on

controlled crosses that provide equilibrated allelic fre-

quencies (Myles et al. 2009). Such a design was developed

in maize with a nested association mapping (NAM) pop-

ulation consisting of 25 RIL populations derived from

crosses between 25 diverse lines and a tester line B73,

which was used to dissect flowering times (Buckler et al.

2009).

Taking advantage of our combined linkage mapping

analysis, we were able to determine whether the association
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signals we detected were false positives. A true association

at a given locus implies that a QTL overlapping this locus

should exist if population parents carry different alleles for

that locus (Zhao et al. 2007). In this study, all of the SNP

detected through the association mapping approach, and for

which alleles differed between RIL parents, were located in

LM-QTL regions. In the case of LG10 and LG15 (detected

only through the suboptimal model ‘‘Kais’’), we confirmed

that the SNP detected were true positives whereas those

detected on LG04, LG12 and LG17 could not be con-

firmed, as the RIL parents were not polymorphic at these

loci.

On the contrary, one major QTL identified with linkage

mapping on LG14 and also reported in the literature

(Poormohammad Kiani et al. 2009) was not tagged through

association mapping. This situation can occur when one of

the alleles at the locus concerned is present at low fre-

quency in the association panel. It can also occur when the

structure of the panel is correlated with polymorphism at

this locus, thus inducing a ‘‘false negative’’ (Famoso et al.

2011). The 106 SNP tested in association mapping were

mapped within the 20-cM support interval of this LG14

QTL. We observed large blocks of LD in this region when

no structure correction was applied, thus helping to confirm

the hypothesis of a false negative in the association

approach.

According to the genetic profile of the two parental lines

XRQ and PSC8 (Fig. 8), the RIL population enabled the

detection of differences resulting from their respective

derivations: g1 9 g3 for XRQ, and g2 9 g3 for PSC8,

which could make it possible to identify loci differentiating

g1 and g2. In contrast, in the association mapping design,

kinship accounted for breeding history and it may have

precluded the detection of association peaks on LG14. This

also suggests that the QTL located on LG14 is an important

feature distinguishing B-type and R-type sunflower lines

for flowering time.

The polygenic pattern of inheritance of the flowering

trait in sunflower has been reported in the literature (Leon

et al. 2000). Taking into consideration the overlap between

association and linkage mapping results, eight regions

involved in the inheritance of flowering time were identi-

fied in this study. Several of these are in good agreement

with other linkage mapping results from studies concerning

the same trait.

In these eight regions, five potential candidates identi-

fied through association peaks appear to be functionally

related to flowering time in other species (Fig. 9). The

peptide predicted from the sunflower sequence

HaT13l016684 and corresponding to the associated marker

HS107108 (localized on LG05) is homologous to the

Arabidopsis BSH protein. Interestingly, BSH interacts with

SWI3B to form a complex with the regulator of flowering

time FCA (Sarnowski et al. 2002). The epigenetic control

of FLC via H3K36 histone modification is controlled by

SDG8 and SDG26 in Arabidopsis and could also be

involved in sunflower. In fact, in their study, Xu et al.

(2008) identified in both SDG8 and SDG26 mutant back-

grounds a modification of expression of a lipase homolo-

gous to a gene associated with flowering time variation in

our study: HaT13l002875. More strikingly, HaT13l048245,

which carries the marker HS061549 on LG10, is homolo-

gous to Arabidopsis GID1B. This gibberellin receptor

regulates DELLA proteins by targeting the proteins to the

proteasome. It is well known that the gibberellin/DELLA

pathway controls flowering time in Arabidopsis (Sun

2010). Several studies have confirmed that this pathway is

prone to genetic variation, which explains flowering time

variations in crops such as maize (Andersen et al. 2005;

Thornsberry et al. 2001) and, most likely, canola (Raman

et al. 2012). However, due to differences in genetic

material, Blackman et al. (2011) were unable to confirm the

presence of this pathway in sunflower. DELLA repressed

ROS accumulation by increasing of the transcription of

Fig. 9 Candidate pathways

involved in flowering time

variation in sunflower. Genes

carrying associated

polymorphisms are indicated in

gray boxes
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genes encoding ROS scavenging enzymes (Achard et al.

2008). Interestingly, two other genes that regulate ROS

accumulation via the ascorbate pathway in Oncidium (Shen

et al. 2009) are carrying confirmed SNP: HaT13l001758

and HaT13l024508, which are homologous to GAUT6 and

PME3, respectively. The functional analysis of genes

associated with flowering time should still be considered

with extreme caution. However, not surprisingly, different

pathways have been identified in which ROS may play a

role and further analysis is needed to resolve this issue.

Conclusion

This study has shown, for observations of flowering time in

cultivated sunflower across several genetic and agronomic

environments, a large similarity between association peaks

detected in a wide panel and QTL mapped in a RIL pop-

ulation. In the linkage disequilibrium mapping approach,

comparison of models demonstrated that the kinship pro-

vided the best fit. However, both due to the genetic design

which aimed to analyze other agronomic traits and to the

breeding history, the detection of associations using this

model did not identify a QTL documented in the literature

and confirmed in this study. The results have provided

novel information on whole genome linkage disequilibrium

in cultivated sunflower, including a possible hitchhiking

effect on two linkage groups carrying loci under strong

selection during the breeding process.
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Châtre (RAGT), P. George and M. Barthes (BIOGEMMA) and col-

leagues from SYNGENTA Seeds for their involvement in sunflower

trial management. This work benefited from the GENOPLANTE

program ‘‘HP1’’ (2001–2004), the ‘‘SUNYFUEL’’ project, financially

supported by the French National Research Agency (2008–2011), and

the ‘‘OLEOSOL’’ project (2009–2012) with the financial support

from the Midi Pyrénées Region, the European Fund for Regional

Development (EFRD), and the French Fund for Competitiveness

Clusters (FUI).

References
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